نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
216 نتائج ل "Kaur, Amanpreet"
صنف حسب:
ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays
The clonogenic or colony formation assay is a widely used method to study the number and size of cancer cell colonies that remain after irradiation or cytotoxic agent administration and serves as a measure for the anti-proliferative effect of these treatments. Alternatively, this assay is used to quantitate the transforming potential of cancer associated genes and chemical agents. Therefore, there is a need for a simplified and standardized analysis of colony formation assays for both routine laboratory use and for parallelized automated analysis. Here we describe the freely available ImageJ-plugin \"ColonyArea\", which is optimized for rapid and quantitative analysis of focus formation assays conducted in 6- to 24-well dishes. ColonyArea processes image data of multi-well dishes, by separating, concentrically cropping and background correcting well images individually, before colony formation is quantitated. Instead of counting the number of colonies, ColonyArea determines the percentage of area covered by crystal violet stained cell colonies, also taking the intensity of the staining and therefore cell density into account. We demonstrate that these parameters alone or in combination allow for robust quantification of IC50 values of the cytotoxic effect of two staurosporines, UCN-01 and staurosporine (STS) on human glioblastoma cells (T98G). The relation between the potencies of the two compounds compared very well with that obtained from an absorbance based method to quantify colony growth and to published data. The ColonyArea ImageJ plugin provides a simple and efficient analysis routine to quantitate assay data of one of the most commonly used cellular assays. The bundle is freely available for download as supporting information. We expect that ColonyArea will be of broad utility for cancer biologists, as well as clinical radiation scientists.
Application of Blockchain and Internet of Things in Healthcare and Medical Sector: Applications, Challenges, and Future Perspectives
Internet of Things (IoT) is one of the recent innovations in Information Technology, which intends to interconnect the physical and digital worlds. It introduces a vision of smartness by enabling communication between objects and humans through the Internet. IoT has diverse applications in almost all sectors like Smart Health, Smart Transportation, and Smart Cities, etc. In healthcare applications, IoT eases communication between doctors and patients as the latter can be diagnosed remotely in emergency scenarios through body sensor networks and wearable sensors. However, using IoT in healthcare systems can lead to violation of the privacy of patients. Thus, security should be taken into consideration. Blockchain is one of the trending research topics nowadays and can be applied to the majority of IoT scenarios. Few major reasons for using the Blockchain in healthcare systems are its prominent features, i.e., Decentralization, Immutability, Security and Privacy, and Transparency. This paper’s main objective was to enhance the functionality of healthcare systems using emerging and innovative computer technologies like IoT and Blockchain. So, initially, a brief introduction to the basic concepts of IoT and Blockchain is provided. After this, the applicability of IoT and Blockchain in the medical sector is explored in three major areas—drug traceability, remote patient-monitoring, and medical record management. At last, the challenges of deploying IoT and Blockchain in healthcare systems are discussed.
Adaptation of IoT with Blockchain in Food Supply Chain Management: An Analysis-Based Review in Development, Benefits and Potential Applications
In today’s scenario, blockchain technology is an emerging area and promising technology in the field of the food supply chain industry (FSCI). A literature survey comprising an analytical review of blockchain technology with the Internet of things (IoT) for food supply chain management (FSCM) is presented to better understand the associated research benefits, issues, and challenges. At present, with the concept of farm-to-fork gaining increasing popularity, food safety and quality certification are of critical concern. Blockchain technology provides the traceability of food supply from the source, i.e., the seeding factories, to the customer’s table. The main idea of this paper is to identify blockchain technology with the Internet of things (IoT) devices to investigate the food conditions and various issues faced by transporters while supplying fresh food. Blockchain provides applications such as smart contracts to monitor, observe, and manage all transactions and communications among stakeholders. IoT technology provides approaches for verifying all transactions; these transactions are recorded and then stored in a centralized database system. Thus, IoT enables a safe and cost-effective FSCM system for stakeholders. In this paper, we contribute to the awareness of blockchain applications that are relevant to the food supply chain (FSC), and we present an analysis of the literature on relevant blockchain applications which has been conducted concerning various parameters. The observations in the present survey are also relevant to the application of blockchain technology with IoT in other areas.
Generation of Ophthalmic Nanosuspension of Prednisolone Acetate Using a Novel Technology
Purpose Prednisolone Acetate (PAC) is currently marketed as micronized ophthalmic suspension. The microsuspension has poor dose accuracy and efficacy due to aggregation, slow dissolution rate and limited corneal residence. The ophthalmic nanosuspension of PAC shall show enhanced solubility, dissolution rate and corneal adhesion due to small particle size and increased surface area. Methods In the current work, we prepared ophthalmic formulation of PAC using a novel, spray drying based technology. Firstly, PAC nanocrystalline solid dispersions (NCSD) were prepared using Mannitol (MAN) as the crystallization inducing excipient and two separate stabilizers, Polyvinyl Alcohol (PAC_MAN_PVA) and Vitamin E Tocopheryl Polyethylene Glycol Sulphosuccinate (PAC_MAN_TPGS). The NCSD was dispersed in an aqueous vehicle to obtain an ophthalmic nanosuspension. Results The composition, PAC_MAN_PVA (0.3:0.67:0.03%), was pursued due to absence of crystal growth on storage at 40°C/75%RH for 3 months. The resulting nanosuspension showed crystal size, osmolality and viscosity of 590 ± 165 nm, 297 ± 6 mOsm/L and 11 ± 8cP respectively. In 1% w / v SLS media, the nanosuspension showed rapid and complete dissolution of PAC in 120 s. Ex-vivo goat corneal permeation and adhesion study revealed that in comparison to microsuspension, a higher fraction (6.2 times) of nanosuspension adhered to the cornea. Safety studies performed using corneal histopathology and Hen Egg Test- Chorio Allantoic Membrane (HET-CAM) assay showed no physical change in cornea or capillary damage, respectively. Conclusions The NCSD can be explored for generation of ophthalmically acceptable nanosuspensions of poorly soluble drugs. Graphical abstract
A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota
Various environmental contaminants including heavy metals, pesticides and antibiotics can contaminate food and water, leading to adverse effects on human health, such as inflammation, oxidative stress and intestinal disorder. Therefore, remediation of the toxicity of foodborne contaminants in human has become a primary concern. Some probiotic bacteria, mainly have received a great attention due to their ability to reduce the toxicity of several contaminants. For instance, can reduce the accumulation and toxicity of selective heavy metals and pesticides in animal tissues by inhibiting intestinal absorption of contaminants and enhancing intestinal barrier function. Probiotics have also shown to decrease the risk of antibiotic-associated diarrhea possibly via competing and producing antagonistic compounds against pathogenic bacteria. Furthermore, probiotics can improve immune function by enhancing the gut microbiota mediated anti-inflammation. Thus, these probiotic bacteria are promising candidates for protecting body against foodborne contaminants-induced toxicity. Study on the mechanism of these beneficial bacterial strains during remediation processes and particularly their interaction with host gut microbiota is an active field of research. This review summarizes the current understanding of the remediation mechanisms of some probiotics and the combined effects of probiotics and gut microbiota on remediation of foodborne contaminants in vivo.
High-resolution genetic mapping of a novel brown planthopper resistance locus, Bph34 in Oryza sativa L. X Oryza nivara (Sharma & Shastry) derived interspecific F2 population
Key message A BPH-resistant locus designated as Bph34 identified in Oryza nivara acc. IRGC104646 on long arm of chromosome 4 using high-resolution mapping with 50 K SNP chip. BPH resistance contributed by locus showed dominant inheritance in F 2 and F 3 . The Bph34 locus is 91 kb in size and contains 11 candidate genes. In addition to SNP markers, SSR markers, RM16994 and RM17007 co-segregated with the BPH resistance. These two SSR markers can facilitate marker-assisted transfer of the Bph34 locus into elite rice cultivars in all labs. Brown planthopper (BPH, Nilaparvata lugen Stål) is one of the most destructive insects of rice ( Oryza sativa L.) causing significant yield losses annually. Exploiting host plant resistance to BPH and incorporating resistant genes in susceptible commercial cultivars is economical and environmentally friendly approach to manage this pest. Here, we report high-resolution mapping of a novel genetic locus for resistance to BPH, designated as Bph34 on long arm of rice chromosome 4. The locus was mapped using an interspecific F 2 population derived from a cross between susceptible indica cultivar PR122 and BPH-resistant wild species, O. nivara acc. IRGC104646. Inheritance studies performed using F 2 and F 2:3 populations revealed the presence of single dominant gene. Construction of high-density linkage map using 50 K SNP chip (OsSNPnks) followed by QTL mapping identified single major locus at 28.8 LOD score between SNP markers, AX-95952039 and AX-95921548. The major locus contributing resistance to BPH designated as Bph34 and explained 68.3% of total phenotypic variance. The Bph34 locus is 91 Kb in size on Nipponbare reference genome-IRGSP-1.0 and contains 11 candidate genes. In addition to associated SNP markers, two SSR markers, RM16994 and RM17007, also co-segregated with the Bph34 which can be used efficiently for markers assisted transfer into elite rice cultivars across the labs.
Dipeptidyl peptidase-4 inhibitor use and mortality in COVID-19 patients with diabetes mellitus: an updated systematic review and meta-analysis
Background: Few observational studies have shown a beneficial effect of dipeptidyl peptidase-4 inhibitors (DPP4i) in patients with coronavirus disease 2019 (COVID-19), although results are not consistent. The present systematic review and meta-analysis was undertaken to provide a precise summary of the effect of DPP4i use (preadmission or in-hospital) and mortality in COVID-19 patients with diabetes mellitus (DM). Methods: PubMed and Google Scholar databases were systematically searched using appropriate keywords to 4 January 2021, to identify observational studies reporting mortality in COVID-19 patients with DM using DPP4i versus those not using DPP4i. Preadmission and in-hospital use of DPP4i were considered. Study quality was assessed using the Newcastle–Ottawa Scale. Unadjusted and adjusted pooled odds ratio (OR) with 95% confidence intervals (CIs) were calculated. Subgroup analysis was performed for studies reporting preadmission and in-hospital use of DPP4i. Results: We identified nine observational studies of high quality pooling data retrieved from 7008 COVID-19 patients with DM. The pooled analysis of unadjusted and adjusted data did not show any significant association between DPP4i use and mortality in COVID-19 patients with DM. However, on subgroup analysis, we found that in-hospital (and not preadmission) DPP4i use was associated with reduced mortality (unadjusted OR 0.37, 95% CI 0.23, 0.58, p < 0.0001, I2 = 0% and adjusted OR 0.27, 95% CI 0.13, 0.55, p = 0.0003, I2 = 12%). Conclusions: In-hospital use of DPP4i is associated with a significant reduction in COVID-19 mortality. Hence, it would be prudent to initiate or continue DPP4i in COVID-19 patients with DM if not contraindicated.
Cattle identification with muzzle pattern using computer vision technology: a critical review and prospective
Cattle identification is required for any type of record system to calving records or performance records, and it has many applications in various fields such as livestock management, insurance claims in banks, health department, and veterinary department. This article presents a systematic review of cattle identification techniques based on current vision technology. This article also assesses the techniques and tools based on their experimental evaluation. Different databases have been scrutinized to evaluate the performance of techniques used to identify the cattle, and the system’s performance achieved in terms of recognition accuracy through the various techniques is summarized in this article. All the potential advantages of cattle identification systems have been tried to explore in this article. Also, the authors identified the need to develop an efficient technique for cattle identification system. This article also directs toward future research in this very respective field. Research in this area is marginal, and still more research is required to be undertaken, particularly in the case of cattle identification based on muzzle points.
Mechanisms and consequences of casein kinase II and ankyrin-3 regulation of the epithelial Na + channel
Activity of the Epithelial Na Channel (ENaC) in the distal nephron fine-tunes renal sodium excretion. Appropriate sodium excretion is a key factor in the regulation of blood pressure. Consequently, abnormalities in ENaC function can cause hypertension. Casein Kinase II (CKII) phosphorylates ENaC. The CKII phosphorylation site in ENaC resides within a canonical \"anchor\" ankyrin binding motif. CKII-dependent phosphorylation of ENaC is necessary and sufficient to increase channel activity and is thought to influence channel trafficking in a manner that increases activity. We test here the hypothesis that phosphorylation of ENaC by CKII within an anchor motif is necessary for ankyrin-3 (Ank-3) regulation of the channel, which is required for normal channel locale and function, and the proper regulation of renal sodium excretion. This was addressed using a fluorescence imaging strategy combining total internal reflection fluorescence (TIRF) microscopy with fluorescence recovery after photobleaching (FRAP) to quantify ENaC expression in the plasma membrane in living cells; and electrophysiology to quantify ENaC activity in split-open collecting ducts from principal cell-specific Ank-3 knockout mice. Sodium excretion studies also were performed in parallel in this knockout mouse. In addition, we substituted a key serine residue in the consensus CKII site in β-ENaC with alanine to abrogate phosphorylation and disrupt the anchor motif. Findings show that disrupting CKII signaling decreases ENaC activity by decreasing expression in the plasma membrane. In the principal cell-specific Ank-3 KO mouse, ENaC activity and sodium excretion were significantly decreased and increased, respectively. These results are consistent with CKII phosphorylation of ENaC functioning as a \"switch\" that favors Ank-3 binding to increase channel activity.
Nitrate-Induced Carbohydrate Accumulation in Chlorella sorokiniana and its Potential for Ethanol Production
Microalgae are considered promising feedstocks for biofuel and bio-product generation. The algal carbohydrates can be hydrolyzed into sugars before their fermentation into ethanol. In this study, nutrient limitation strategy was employed to evaluate the biochemical composition of Chlorella sorokiniana . Limiting nitrate (1.0 g/L KNO 3 ) in the culture medium increased the total carbohydrate and starch content of microalga by 50.28 and 34.06%, respectively. However, this significantly lowered their yield due to low microalgal biomass production. Cultivation of C. sorokiniana cells with 4.0 g/L KNO 3 as nitrogen source for 8 days was optimum for bioethanol production as the highest total carbohydrate yield of 422.44 mg/L was obtained under these conditions. Nitrate limitation (1.0 g/L KNO 3 ) favored the increased production of high-value carotenoids in C. sorokiniana that could further contribute to improving the economics of the bioethanol production process. Feasibility studies for ethanol production from C. sorokiniana revealed that a maximum of 13.86 mg/mL of reducing sugars was extracted in the hydrolysate by treating the microalgal biomass with 2.8% sulfuric acid at 121 °C for 30 min. Fermentation of acid hydrolysate produced ethanol at a concentration of 2.91 mg/mL in 96 h with 41.16% of theoretical yield.